
 CLOUD COMPUTING

 UNIT- IV

 CLOUD PROGRAMMING MODEL

 Topics Covered:

 Features of Cloud and Grid Platforms

 Parallel and Distributed Programming Paradigms

 Mapping Applications to Parallel and Distributed Systems

 Programming Support of Google App Engine

 Programming on Amazon AWS

 Emerging Cloud Software Environments

 Open Source Eucalyptus OpenNebula Sector/Sphere

 OpenStack Manjrasoft Aneka Cloud CloudSim

 Features of Cloud and Grid Platforms

We summarize important features in real cloud and grid platforms. In four tables, we cover the capabilities,
traditional features, data features, and features for programmers and runtime systems to use.

RCR Institute of Management & Technology (RCRM) Page 1

 CLOUD COMPUTING

Data Features and Databases

 Program Library: Many efforts have been made to design a VM image library to manage images

used in academic and commercial clouds.

 Blobs and Drives: This concept is similar to shared file systems such as Lustre used in TeraGrid.

The cloud storage is intrinsically fault-tolerant while that on TeraGrid needs backup storage.

 DPFS: In general, data transport will be needed to link these two data views. It seems important to

consider this carefully, as DPFS file systems are precisely designed for efficient execution of data-

intensive applications.

 SQL and Relational Databases: Both Amazon and Azure clouds offer relational databases and it

is straightforward for academic systems to offer a similar capability unless there are issues of huge

scale where, in fact, approaches based on tables and/or MapReduce might be more appropriate.

 Table and NOSQL Non Relational Databases: A substantial number of important developments

have occurred regarding simplified database structures—termed “NOSQL” —typically emphasizing

distribution and scalability. These are present in the three major clouds: BigTable in Google,

SimpleDB in Amazon, and Azure Table for Azure.

 Queuing Services: Both Amazon and Azure offer similar scalable, robust queuing services that are

used to communicate between the components of an application. The messages are short (less than

8 KB) and have a Representational State Transfer (REST) service interface with “deliver at least

once” semantics.

Programming and Runtime Support

 Programming and runtime support are desired to facilitate parallel programming and

provide runtime support of important functions in today’s grids and clouds.

 Here , MapReduce is used to group the processes in clouds to reduce individual process mapping.

Example: Google MapReduce, Apache Hadoop uses MapReduce

RCR Institute of Management & Technology (RCRM) Page 2

 CLOUD COMPUTING

 The major open source/commercial MapReduce implementations are Hadoop and Dryad with
execution possible with or without VMs.

 We desire a SaaS environment that provides many useful tools to develop cloud applications over

large data sets. In addition to the technical features, such as MapReduce, BigTable, EC2, S3,

Hadoop, AWS, GAE, and WebSphere2, we need protection features that may help us to achieve

scalability, security, privacy, and availability.

 Parallel and Distributed Programming Paradigms

 Consider a distributed computing system consisting of a set of networked nodes or workers. The

system issues for running a typical parallel program in either a parallel or a distributed manner would
include the following,

 Partitioning: This is applicable to both computation and data as follows:

o Computation partitioning This splits a given job or a program into smaller tasks. Partitioning

greatly depends on correctly identifying portions of the job or program that can be performed

concurrently. In other words, upon identifying parallelism in the structure of the program, it can

be divided into parts to be run on different workers. Different parts may process different data or

a copy of the same data.

o Data partitioning This splits the input or intermediate data into smaller pieces. Similarly, upon

identification of parallelism in the input data, it can also be divided into pieces to be processed

on different workers. Data pieces may be processed by different parts of a program or a copy of

the same program.

 Mapping: This assigns the either smaller parts of a program or the smaller pieces of data to
underlying resources. This process aims to appropriately assign such parts or pieces to be run
simultaneously on different workers and is usually handled by resource allocators in the system.

 Synchronization: Because different workers may perform different tasks, synchronization and
coordination among workers is necessary so that race conditions are prevented and data dependency
among different workers is properly managed.

 Communication: Because data dependency is one of the main reasons for communication among
workers, communication is always triggered when the intermediate data is sent to workers.

 Scheduling: For a job or program, when the number of computation parts (tasks) or data pieces is

more than the number of available workers, a scheduler selects a sequence of tasks or data pieces to
be assigned to the workers. It is worth noting that the resource allocator performs the actual mapping

of the computation or data pieces to workers, while the scheduler only picks the next part from the
queue of unassigned tasks based on a set of rules called the scheduling policy. For multiple jobs or

programs, a scheduler selects a sequence of jobs or programs to be run on the distributed computing
system.

Because handling the whole data flow of parallel and distributed programming is very time consuming and

requires specialized knowledge of programming, dealing with these issues may affect the productivity of

the programmer and may even result in affecting the program’s time to market. Therefore, parallel and

distributed programming paradigms or models are offered to abstract many parts of the data flow from

RCR Institute of Management & Technology (RCRM) Page 3

 CLOUD COMPUTING

users to provide users with an abstraction layer to hide implementation details of the data flow which users

formerly ought to write codes for.

Other motivations behind parallel and distributed programming models are

(1) to improve productivity of programmers,
(2) to decrease programs’ time to market,

(3) to leverage underlying resources more efficiently,
(4) to increase system throughput, and
(5) to support higher levels of abstraction.

MapReduce, Hadoop, and Dryad are three of the most recently proposed parallel and distributed

programming models. They were developed for information retrieval applications but have been shown to

be applicable for a variety of important applications

 MapReduce, Twister, and Iterative MapReduce

MapReduce is a software framework which supports parallel and distributed computing on large data sets.

This software framework abstracts the data flow of running a parallel program on a distributed computing

system by providing users with two interfaces in the form of two functions: Map and Reduce. Users can

override these two functions to interact with and manipulate the data flow of running their programs.

Given below FIGURE illustrates the logical data flow from the Map to the Reduce function in MapReduce

frameworks. In this framework, the “value” part of the data, (key, value), is the actual data, and the “key”

part is only used by the MapReduce controller to control the data flow.

Figure: MapReduce framework: Input data flows through the Map and Reduce functions to generate the

output result under the control flow using MapReduce software library. Special user interfaces are used to
access the Map and Reduce resources.

Formal Definition of MapReduce

The MapReduce software framework provides an abstraction layer with the data flow and flow of control

to users, and hides the implementation of all data flow steps such as data partitioning, mapping,
synchronization, communication, and scheduling. The abstraction layer provides two well-defined

interfaces in the form of two functions: Map and Reduce. The user overrides the Map and Reduce functions
first and then invokes the provided MapReduce (Spec, & Results) function from the library to start the flow

of data. The MapReduce function, MapReduce (Spec, & Results), takes an important parameter which is a

RCR Institute of Management & Technology (RCRM) Page 4

 CLOUD COMPUTING

specification object, the Spec. This object is first initialized inside the user’s program, and then the user

writes code to fill it with the names of input and output files, as well as other optional tuning parameters.
This object is also filled with the name of the Map and reduce functions to identify these userdefined

functions to the MapReduce library.

The overall structure of a user’s program containing the Map, Reduce, and the Main functions is given
below. The Map and Reduce are two major subroutines. They will be called to implement the desired
function performed in the main program.

Map Function (... .)
{

... ...
}

Reduce Function (... .)
{

... ...
}

Main Function (... .)
{

Initialize Spec object
... ...

MapReduce (Spec, & Results)
}

MapReduce Logical Data Flow

The input data to the Map function is in the form of a (key, value) pair. For example, the key is the line

offset within the input file and the value is the content of the line. The output data from the Map function is

structured as (key, value) pairs called intermediate (key, value) pairs. In other words, the user-defined Map

function processes each input (key, value) pair and produces a number of (zero, one, or more) intermediate

(key, value) pairs. Here, the goal is to process all input (key, value) pairs to the Map function in parallel.

The Reduce function receives the intermediate (key, value) pairs in the form of a group of intermediate

values associated with one intermediate key, (key, [set of values]). The MapReduce framework forms these

groups by first sorting the intermediate (key, value) pairs and then grouping values with the same key. It

should be noted that the data is sorted to simplify the grouping process. The Reduce function processes

each (key, [set of values]) group and produces a set of (key, value) pairs as output.

Figure: MapReduce logical data flow in 5 processing stages over successive (key, value) pairs.

RCR Institute of Management & Technology (RCRM) Page 5

 CLOUD COMPUTING

Example: sample MapReduce application word count with two lines (1) “most people ignore most poetry”

and (2) “most poetry ignores most people.” The Map function simultaneously produces a number of

intermediate (key, value) pairs for each line of content so that each word is the intermediate key with 1 as

its intermediate value; for example, (ignore, 1). Then the MapReduce library collects all the generated

intermediate (key, value) pairs and sorts them to group the 1’s for identical words; for example, (people,

[1,1]). Groups are then sent to the Reduce function in parallel so that it can sum up the 1 values for each

word and generate the actual number of occurrence for each word in the file; for example, (people, 2).

Figure: The data flow of a word-count problem using the MapReduce functions (Map, Sort, Group
and Reduce) in a cascade operations.

Formal Notation of MapReduce Data Flow

The Map function is applied in parallel to every input (key, value) pair, and produces new set of

intermediate (key, value) pairs

Then the MapReduce library collects all the produced intermediate (key, value) pairs from all input

(key, value) pairs, and sorts them based on the “key” part. Finally, the Reduce function is applied in

parallel to each group producing the collection of values as output as illustrated here:

MapReduce Actual Data and Control Flow: The main responsibility of the MapReduce framework is to

efficiently run a user’s program on a distributed computing system, which handles all partitioning,

mapping, synchronization, communication, and scheduling details of such data flows

1) Data partitioning: The MapReduce library splits the input data (files), already stored in GFS, into M

pieces that also correspond to the number of map tasks.

2) Computation partitioning This is implicitly handled (in the MapReduce framework) by obliging

users to write their programs in the form of the Map and Reduce functions. The MapReduce library only

RCR Institute of Management & Technology (RCRM) Page 6

 CLOUD COMPUTING

generates copies of a user program (e.g., by a fork system call) containing the Map and the Reduce

functions, distributes them, and starts them up on a number of available computation engines.

3) Determining the master and workers: The MapReduce architecture is based on a master worker

model and one of the copies of the user program becomes the master and the rest become workers. The

master picks idle workers, and assigns the map and reduce tasks to them. A map/reduce worker is

typically a computation engine such as a cluster node to run map/ reduce tasks by executing

Map/Reduce functions.

4) Reading the input data (data distribution): Each map worker reads its corresponding portion of the

input data, namely the input data split, and sends it to its Map function.
5) Map function: Each Map function receives the input data split as a set of (key, value) pairs to process

and produce the intermediated (key, value) pairs.
6) Combiner function: This is an optional local function within the map worker which applies to

intermediate (key, value) pairs. The user can invoke the Combiner function inside the user program. The

Combiner function runs the same code written by users for the Reduce function as its functionality is

identical to it. The Combiner function merges the local data of each map worker before sending it over

the network to effectively reduce its communication costs.

7) Partitioning function: The intermediate (key, value) pairs produced by each map worker are

partitioned into R regions, equal to the number of reduce tasks, by the Partitioning function to guarantee

that all (key, value) pairs with identical keys are stored in the same region. As a result, since reduce

worker i reads the data of region i of all map workers, all (key, value) pairs with the same key will be

gathered by reduce worker i accordingly. a Partitioning function could simply be a hash function (e.g.,

Hash(key) mod R) that forwards the data into particular regions.

8) Synchronization: MapReduce applies a simple synchronization policy to coordinate map workers with

reduce workers, in which the communication between them starts when all map tasks finish.
9) Communication: Reduce worker i, already notified of the location of region i of all map workers, uses

a remote procedure call to read the data from the respective region of all map workers. Since all reduce

workers read the data from all map workers, all-to-all communication among all map and reduce

workers, which incurs network congestion, occurs in the network.

10) Sorting and Grouping: When the process of reading the input data is finalized by a reduce worker,

the data is initially buffered in the local disk of the reduce worker. Then the reduce worker groups

intermediate (key, value) pairs by sorting the data based on their keys, followed by grouping all

occurrences of identical keys.

11) Reduce function: The reduce worker iterates over the grouped (key, value) pairs, and for each unique

key, it sends the key and corresponding values to the Reduce function. Then this function processes its

input data and stores the output results in predetermined files in the user’s program.

Figure: Use of MapReduce partitioning function to link the Map and Reduce workers

RCR Institute of Management & Technology (RCRM) Page 7

 CLOUD COMPUTING

Figure: Data flow implementation of many functions in the Map workers and in the Reduce workers

through multiple sequences of partitioning, combining, synchronization and communication, sorting

and grouping, and reduce operations.

RCR Institute of Management & Technology (RCRM) Page 8

 CLOUD COMPUTING

Twister and Iterative MapReduce

It is important to understand the performance of different runtimes and, in particular, to compare Message
Passing Interface (MPI) and MapReduce. The two major sources of parallel overhead are load imbalance
and communication. The communication overhead in MapReduce can be quite high, for two reasons:

 MapReduce reads and writes via files, whereas MPI transfers information directly between nodes over the
network.

 MPI does not transfer all data from node to node, but just the amount needed to update information.

We can call the MPI flow δ flow and the MapReduce flow full data flow.

The same phenomenon is seen in all “classic parallel” loosely synchronous applications which typically
exhibit an iteration structure over compute phases followed by communication phases. We can address the

performance issues with two important changes:

1) Stream information between steps without writing intermediate steps to disk.
2) Use long-running threads or processors to communicate the δ (between iterations) flow.

The Twister programming paradigm and its implementation architecture at run time are illustrated in below
Figure. Twister distinguishes the static data which is never reloaded from the dynamic δ flow that is
communicated.

Figure: Twister - An iterative MapReduce programming paradigm for repeated MapReduce

executions. (a) Twister for iterative MapReduce programming and (b) Architectue of Twister at

runtime.

RCR Institute of Management & Technology (RCRM) Page 9

 CLOUD COMPUTING

The Map-Reduce pair is iteratively executed in long-running threads. We compare in Figure the different

thread and process structures of 4 parallel programming paradigms: namely Hadoop, Dryad, Twister (also

called MapReduce++), and MPI.

Figure: compare the different thread and process structures of 4 parallel programming paradigms:

namely Hadoop, Dryad, Twister (also called MapReduce++), and MPI.

Hadoop Library from Apache

 Hadoop is an open source implementation of MapReduce coded and released in Java.

 The Hadoop implementation of MapReduce uses the Hadoop Distributed File System (HDFS) as its
underlying layer.

 The Hadoop core is divided into two fundamental layers: the MapReduce engine and HDFS. The
MapReduce engine is the computation engine running on top of HDFS as its data storage manager.
The following two sections cover the details of these two fundamental layers.

 HDFS: HDFS is a distributed file system inspired by GFS that organizes files and stores their data on a
distributed computing system.

HDFS Architecture: HDFS has a master/slave architecture containing a single NameNode as the

master and a number of DataNodes as workers (slaves). To store a file in this architecture, HDFS

splits the file into fixed-size blocks (e.g., 64 MB) and stores them on workers (DataNodes). The

mapping of blocks to DataNodes is determined by the NameNode. The NameNode (master) also

manages the file system’s metadata and namespace. In such systems, the namespace is the area

maintaining the metadata, and metadata refers to all the information stored by a file system that is

needed for overall management of all files.

Each DataNode, usually one per node in a cluster, manages the storage attached to the node. Each Data
Node is responsible for storing and retrieving its file blocks.

RCR Institute of Management & Technology (RCRM) Page 10

 CLOUD COMPUTING

HDFS Features:

Distributed file systems have special requirements, such as performance, scalability, concurrency control,

fault tolerance, and security requirements, to operate efficiently. Two important characteristics of HDFS

are,

 HDFS Fault Tolerance

 Block Replication: HDFS stores a file as a set of blocks and each block is replicated and

distributed across the whole cluster. The replication factor is set by the user and is three by default.

 Replica placement: HDFS stores one replica in the same node the original data is stored, one

replica on a different node but in the same rack, and one replica on a different node in a different

rack to provide three copies of the data.

 Heartbeat and Blockreport messages: Heartbeats and Blockreports are periodic messages sent to

the NameNode by each DataNode in a cluster. Receipt of a Heartbeat implies that the DataNode is

functioning properly, while each Blockreport contains a list of all blocks on a DataNode.

 HDFS High-Throughput Access to Large Data Sets (Files), this is for providing batch processing
rather than interactive processing, data access throughput in HDFS is more important than latency.
Applications run on HDFS typically have large data sets, individual files are broken into large blocks
(e.g., 64MB) to allow HDFS to decrease the amount of metadata storage required per file.

HDFS Operation: The control flow of HDFS operations such as write and read can properly

highlight roles of the NameNode and DataNodes in the managing operations. The control flow of

the main operations of HDFS on files is further described to manifest the interaction between the

user, the NameNode, and the DataNodes in such systems.

1) Reading a file: To read a file in HDFS, a user sends an “open” request to the NameNode to

get the location of file blocks. For each file block, the NameNode returns the address of a set

of DataNodes containing replica information for the requested file. The user calls the read

function to connect to the closest DataNode containing the first block of the file. After the

first block is streamed from the respective DataNode to the user, the established connection

is terminated and the same process is repeated for all blocks of the requested file until the

whole file is streamed to the user.

2) Writing to a file: To write a file in HDFS, a user sends a “create” request to the NameNode

to create a new file in the file system namespace. If the file does not exist, the NameNode

notifies the user and allows him to start writing data to the file by calling the write function.

The first block of the file is written to an internal queue termed the data queue while a data

streamer monitors its writing into a DataNode.

Architecture of MapReduce in Hadoop

The topmost layer of Hadoop is the MapReduce engine that manages the data flow and control flow of

MapReduce jobs over distributed computing systems. The MapReduce engine also has a master/slave

architecture consisting of a single JobTracker as the master and a number of TaskTrackers as the slaves

(workers). The JobTracker manages the MapReduce job over a cluster and is responsible for monitoring

jobs and assigning tasks to TaskTrackers.

RCR Institute of Management & Technology (RCRM) Page 11

 CLOUD COMPUTING

Figure: HDFS and MapReduce architecture in Hadoop where boxes with different shadings refer to

different functional nodes applied to different blocks of data.

Running a Job in Hadoop

Three components contribute in running a job in this system: a user node, a JobTracker, and several

TaskTrackers. The data flow starts by calling the runJob(conf) function inside a user program running on

the user node, in which conf is an object containing some tuning parameters for the MapReduce framework

and HDFS. The runJob(conf) function and conf are comparable to the MapReduce(Spec, &Results)

function and Spec in the first implementation of MapReduce by Google.

Figure: Data flow in running a MapReduce job at various task trackers using the Hadoop library.

Job Submission Each job is submitted from a user node to the JobTracker node that might be situated in
a different node within the cluster through the following procedure:

 A user node asks for a new job ID from the JobTracker and computes input file splits.

 The user node copies some resources, such as the job’s JAR file, configuration file, and computed

input splits, to the JobTracker’s file system.
 The user node submits the job to the JobTracker by calling the submitJob() function.

RCR Institute of Management & Technology (RCRM) Page 12

 CLOUD COMPUTING

Task Assignment The JobTracker creates one map task for each computed input split by the user node and

assigns the map tasks to the execution slots of the TaskTrackers. The JobTracker considers the localization

of the data when assigning the map tasks to the TaskTrackers. The JobTracker also creates reduce tasks

and assigns them to the TaskTrackers. The number of reduce tasks is predetermined by the user, and there

is no locality consideration in assigning them.

Task Execution The control flow to execute a task (either map or reduce) starts inside the TaskTracker by

copying the job JAR file to its file system. Instructions inside the job JAR file are executed after launching

a Java Virtual Machine (JVM) to run its map or reduce task.

Task running check A task running check is performed by receiving periodic heartbeat messages to the

JobTracker from the TaskTrackers. Each heartbeat notifies the JobTracker that the sending TaskTracker is

alive, and whether the sending TaskTracker is ready to run a new task.

 Mapping Applications to Parallel and Distributed Systems:

Mapping applications to different hardware and software in terms of five application architectures,
these initial five categories are listed in Table.

RCR Institute of Management & Technology (RCRM) Page 13

 CLOUD COMPUTING

Category 1 was popular 20 years ago, but is no longer significant. It describes applications that can be

parallelized with lock-step operations controlled by hardware, run on SIMD (single-instruction and

multiple-data) machines.

Category 2 is now much more important and corresponds to a SPMD (single-program and multipledata)

model running on MIMD (multiple instruction multiple data) machines. Here, each decomposed and

includes dynamic irregular cases with complex geometries for solving partial differential equations or

particle dynamics. Also note that category 2 consists of compute–communicate phases and the

computations are synchronized by communication. No additional synchronization is needed.

Category 3 consists of asynchronously interacting objects and is often considered the people’s view of a

typical parallel problem. It probably does describe the concurrent threads in a modern operating system, as

well as some important applications, such as event-driven simulations and areas such as search in computer

games and graph algorithms. Shared memory is natural due to the low latency often needed to perform

dynamic synchronization. It wasn’t clear in the past, but now it appears that this category is not very

common in large-scale parallel problems of importance.

Category 4 is the simplest algorithmically, with disconnected parallel components. Both grids and clouds

are very natural for this class, which does not need high-performance communication between different

nodes.

Category 5 refers to the coarse-grained linkage of different “atomic” problems, Grids or clouds are

suitable for metaproblems as coarse grained decomposition does not usually require stringent performance.

we added a sixth category to cover data-intensive applications motivated by the clear importance of

MapReduce as a new programming model. We call this category MapReduce++, and it has three

subcategories: “map only” applications similar to pleasingly parallel category 4.

 Programming Support of Google App Engine

Programming the Google App Engine

o Below Figure summarizes some key features of GAE programming model for two supported
languages: Java and Python.

o There are several powerful constructs for storing and accessing data. The data store is a NOSQL
data management system for entities that can be, at most, 1 MB in size and are labeled by a set of
schema-less properties. Queries can retrieve entities of a given kind filtered and sorted by the values
of the properties. Java offers Java Data Object (JDO) and Java Persistence API (JPA) interfaces
implemented by the open source Data Nucleus Access platform, while Python has a SQL-like query
language called GQL. The data store is strongly consistent and uses optimistic concurrency control.

o The data store implements transactions across its distributed network using “entity groups.” A

transaction manipulates entities within a single group. Entities of the same group are stored together

for efficient execution of transactions. Your GAE application can assign entities to groups when the

entities are created. The performance of the data store can be enhanced by in-memory caching using

the memcache, which can also be used independently of the data store.

RCR Institute of Management & Technology (RCRM) Page 14

 CLOUD COMPUTING

Figure: Programming environment for Google App Engine.

RCR Institute of Management & Technology (RCRM) Page 15

 CLOUD COMPUTING

o Google added the blobstore which is suitable for large files as its size limit is 2 GB. There are

several mechanisms for incorporating external resources. The Google SDC Secure Data Connection

can tunnel through the Internet and link your intranet to an external GAE application. The URL

Fetch operation provides the ability for applications to fetch resources and communicate with other

hosts over the Internet using HTTP and HTTPS requests. There is a specialized mail mechanism to

send e-mail from your GAE application.

o Applications can access resources on the Internet, such as web services or other data, using GAE’s

URL fetch service. The URL fetch service retrieves web resources using the same highspeed

Google infrastructure that retrieves web pages for many other Google products. There are dozens of

Google “corporate” facilities including maps, sites, groups, calendar, docs, and YouTube, among

others. These support the Google Data API which can be used inside GAE.

o Applications can access resources on the Internet, such as web services or other data, using GAE’s

URL fetch service. The URL fetch service retrieves web resources using the same highspeed

Google infrastructure that retrieves web pages for many other Google products. There are dozens of

Google “corporate” facilities including maps, sites, groups, calendar, docs, and YouTube, among

others. These support the Google Data API which can be used inside GAE.

Google File System (GFS)

 GFS typically will hold a large number of huge files, each 100MB or larger, with files that are
multiple GB in size quite common. Thus, Google has chosen its file data block size to be 64MB
instead of the 4 KB in typical traditional file systems.

 Other nodes act as the chunk servers for storing data, while the single master stores the metadata.
The file system namespace and locking facilities are managed by the master. The master periodically
communicates with the chunk servers to collect management information as well as give instructions
to the chunk servers to do work such as load balancing or fail recovery.

Figure: Architecture of Google File System (GFS).

BigTable, Google’s NOSQL System

 Big Table was designed to provide a service for storing and retrieving structured and

semi structured data.

RCR Institute of Management & Technology (RCRM) Page 16

 CLOUD COMPUTING

 Big Table applications include storage of web pages, per-user data, and geographic locations. Here

we use web pages to represent URLs and their associated data, such as contents, crawled

metadata, links, anchors, and page rank values.

 BigTable can be viewed as a distributed multilevel map. It provides a fault-tolerant and persistent
database as in a storage service. The BigTable system is scalable, which means the system has
thousands of servers, terabytes of in-memory data, petabytes of disk-based data, millions of
reads/writes per second, and efficient scans.

 BigTable is used in many projects, including Google Search, Orkut, and Google Maps/Google

Earth, among others. One of the largest BigTable cell manages ~200 TB of data spread over several
thousand machines.

Large tables are broken into tablets at row boundaries. A tablet holds a contiguous range of rows. Clients

can often choose row keys to achieve locality. The system aims for about 100MB to 200MB of data per

tablet.

Chubby, Google’s Distributed Lock Service

Chubby is intended to provide a coarse-grained locking service. It can store small files inside Chubby

storage which provides a simple namespace as a file system tree. The files stored in Chubby are quite small

compared to the huge files in GFS. Based on the Paxos agreement protocol, the Chubby system can be

quite reliable despite the failure of any member node.

 Programming on Amazon AWS :

we will consider the programming support in the AWS platform. The Elastic MapReduce capability is

equivalent to Hadoop running on the basic EC2 offering. Amazon has NOSQL support. Amazon offers the

Simple Queue Service (SQS) and Simple Notification Service (SNS).

Programming on Amazon EC2
Amazon was the first company to introduce VMs in application hosting. Customers can rent VMs instead

of physical machines to run their own applications. By using VMs, customers can load any software of

RCR Institute of Management & Technology (RCRM) Page 17

 CLOUD COMPUTING

their choice. The elastic feature of such a service is that a customer can create, launch, and terminate server

instances as needed, paying by the hour for active servers. Amazon provides several types of preinstalled

VMs. Instances are often called Amazon Machine Images (AMIs) which are preconfigured with operating

systems based on Linux or Windows, and additional software.

AMIs are the templates for instances, which are running VMs. The workflow to create a VM is Create an

AMI→Create Key Pair→Configure Firewall→Launch.

Three Types of AMI

Private AMI Images created by you, which are private by default. You can grant access to other users to

launch your private images.

Public AMI Images created by users and released to the AWS community, so anyone can launch instances

based on them and use them any way they like.

Paid QAMI You can create images providing specific functions that can be launched by anyone willing

to pay you per each hour of usage on top of Amazon’s charges.

Figure: Amazon EC2 execution environment.

Both auto-scaling and elastic load balancing are enabled by CloudWatch which monitors running instances.

CloudWatch is a web service that provides monitoring for AWS cloud resources, starting with Amazon

EC2. It provides customers with visibility into resource utilization, operational performance, and overall

demand patterns—including metrics such as CPU utilization, disk reads and writes, and network traffic.

Amazon Simple Storage Service (S3)

Amazon S3 provides a simple web services interface that can be used to store and retrieve any amount of

data, at any time, from anywhere on the web. S3 provides the object-oriented storage service for users.

Users can access their objects through Simple Object Access Protocol (SOAP) with either browsers or

other client programs which support SOAP. SQS is responsible for ensuring a reliable message service

between two processes, even if the receiver processes are not running.

RCR Institute of Management & Technology (RCRM) Page 18

 CLOUD COMPUTING

The fundamental operation unit of S3 is called an object. Each object is stored in a bucket and retrieved via

a unique, developer-assigned key. In other words, the bucket is the container of the object. Besides unique

key attributes, the object has other attributes such as values, metadata, and access control information.

Figure: Amazon S3 execution environment

Here are some key features of S3:

 Redundant through geographic dispersion

 Designed to provide 99.999999999 percent durability and 99.99 percent availability of

objects over a given year with cheaper reduced redundancy storage (RRS).

 Authentication mechanisms to ensure that data is kept secure from unauthorized access.

Objects can be made private or public, and rights can be granted to specific users.
 Per-object URLs and ACLs (access control lists).

 Default download protocol of HTTP. A BitTorrent protocol interface is provided to lower

costs for high-scale distribution.

 First 1 GB per month input or output free and then $.08 to $0.15 per GB for transfers

outside an S3 region.

 There is no data transfer charge for data transferred between Amazon EC2 and Amazon

S3 within the same region.

Amazon Elastic Block Store (EBS) and SimpleDB

The Elastic Block Store (EBS) provides the volume block interface for saving and restoring the virtual

images of EC2 instances. Traditional EC2 instances will be destroyed after use. The status of EC2 can now
be saved in the EBS system after the machine is shut down. Users can use EBS to save persistent data and

mount to the running instances of EC2. Note that S3 is “Storage as a Service” with a messaging interface.
EBS allows you to create storage volumes from 1 GB to 1 TB that can be mounted as
EC2 instances.

Amazon SimpleDB Service

SimpleDB provides a simplified data model based on the relational database data model. Structureddata
from users must be organized into domains. Each domain can be considered a table. The items are the rows
in the table.

RCR Institute of Management & Technology (RCRM) Page 19

 CLOUD COMPUTING

 Emerging Cloud Software Environments

We will assess popular cloud operating systems and emerging software environments. We cover the open
source Eucalyptus, OpenNebula, Open Stack , and ClodSim.

Open Source Eucalyptus

 Eucalyptus was initially aimed at bringing the cloud computing paradigm to academic
supercomputers and clusters. Eucalyptus provides an AWS-compliant EC2-based web service
interface for interacting with the cloud service. Additionally, Eucalyptus provides services, such as
the AWS-compliant Walrus, and a user interface for managing users and images.

 Eucalyptus Architecture: The Eucalyptus system is an open software environment. Figure shows the
architecture based on the need to manage VM images. The system supports cloud programmers in
VM image management as follows. Essentially, the system has been extended to support the
development of both the computer cloud and storage cloud.

 VM Image Management: Eucalyptus stores images in Walrus, the block storage system that is
analogous to the Amazon S3 service. As such, any user can bundle her own root file system, and
upload and then register this image and link it with a particular kernel and ramdisk image.

Figure: The Eucalyptus architecture for VM image management.

Nimbus: Nimbus is a set of open source tools that together provide an IaaS cloud computing solution.

Nimbus is a set of open source tools that together provide an IaaS cloud computing solution. A storage

cloud implementation called Cumulus has been tightly integrated with the other central services,

although it can also be used stand-alone.

RCR Institute of Management & Technology (RCRM) Page 20

 CLOUD COMPUTING

Figure: Nimbus cloud infrastructure.

OpenNebula

o OpenNebula is an open source toolkit which allows users to transform existing infrastructure into an

IaaS cloud with cloud-like interfaces. Figure shows the OpenNebula architecture and its main

components.

Figure: OpenNebula architecture and its main components

o Here, the core is a centralized component that manages the VM full life cycle, including setting up

networks dynamically for groups of VMs and managing their storage requirements, such as VM disk

image deployment or on-the-fly software environment creation.

o The default capacity scheduler is a requirement/rank matchmaker. However, it is also possible to

develop more complex scheduling policies, through a lease model and advance reservations.

RCR Institute of Management & Technology (RCRM) Page 21

 CLOUD COMPUTING

o The access drivers , provide an abstraction of the underlying infrastructure to expose the basic

functionality of the monitoring, storage, and virtualization services available in the cluster.

o OpenNebula can support a hybrid cloudmodel by using cloud drivers to interface with external

clouds. Regarding storage, an Image Repository allows users to easily specify disk images from a

catalog without worrying about low-level disk configuration attributes or block device mapping.

Sector/Sphere

 Sector/Sphere is a software platform that supports very large distributed data storage and simplified

distributed data processing over large clusters of commodity computers, either within a data center

or across multiple data centers. The system consists of the Sector distributed file system and the

Sphere parallel data processing framework. Sector is a distributed file system (DFS) that can be

deployed over a wide area and allows users to manage large data sets from any location with a high

speed network connection

 Since Sector is aware of the network topology when it places replicas, it also provides better

reliability, availability, and access throughout. The communication is performed using User

Datagram Protocol (UDP) for message passing and user-defined type (UDT) for data transfer.

The Sector/Sphere system architecture

 Sphere is a parallel data processing engine designed to work with data managed by Sector. This
coupling allows the system to make accurate decisions about job scheduling and data location.
Sphere provides a programming framework that developers can use to process data stored in Sector.

 The first component is the security server, which is responsible for authenticating master servers,
slave nodes, and users. The last component is the client component.

OpenStack

 OpenStack focuses on the development of two aspects of cloud computing to address compute and
storage aspects with the OpenStack Compute and OpenStack Storage solutions. “OpenStack

Compute is the internal fabric of the cloud creating and managing large groups of virtual private

servers” and “OpenStack Object Storage is software for creating redundant, scalable object storage

using clusters of commodity servers to store terabytes or even petabytes of data.”

RCR Institute of Management & Technology (RCRM) Page 22

 CLOUD COMPUTING

OpenStack Compute

 As part of its computing support efforts, OpenStack is developing a cloud computing fabric
controller, a component of an IaaS system, known as Nova. The architecture for Nova is built on the
concepts of shared-nothing and messaging-based information exchange.

 In this architecture, the API Server receives HTTP requests from boto, converts the commands to
and from the API format, and forwards the requests to the cloud controller. The cloud controller

maintains the global state of the system, ensures authorization while interacting with the User
Manager via Lightweight Directory Access Protocol (LDAP), interacts with the S3 service, and

manages nodes, as well as storage workers through a queue. Nova integrates networking
components to manage private networks, public IP addressing, virtual private network (VPN)

connectivity, and firewall rules. It includes the following types:

o NetworkController manages address and virtual LAN (VLAN) allocations

o RoutingNode governs the NAT (network address translation) conversion of public IPs to private

IPs, and enforces firewall rules

o AddressingNode runs Dynamic Host Configuration Protocol (DHCP) services for private Networks

o TunnelingNode provides VPN connectivity The network state (managed in the distributed object

store) consists of the following:

o VLAN assignment to a project

o Private subnet assignment to a security group in a VLAN

o Private IP assignments to running instances
o Public IP allocations to a project
o Public IP associations to a private IP/running instance

Figure: OpenStack Nova system architecture. The AMQP (Advanced Messaging Queuing Protocol)

Open Stack Storage

The OpenStack storage solution is built around a number of interacting components and concepts,

including a proxy server, a ring, an object server, a container server, an account server, replication,

updaters, and auditors. The role of the proxy server is to enable lookups to the accounts, containers, or

objects in OpenStack storage rings and route the requests. A ring represents a mapping between the names

of entities stored on disk and their physical locations. Objects are stored as binary files with metadata

stored in the file’s extended attributes.

RCR Institute of Management & Technology (RCRM) Page 23

 CLOUD COMPUTING

Manjrasoft Aneka Cloud

 Aneka is a cloud application platform developed by Manjrasoft, based in Melbourne, Australia. It is
designed to support rapid development and deployment of parallel and distributed applications on
private or public clouds. It provides a rich set of APIs for transparently exploiting distributed
resources and expressing the business logic of applications by using preferred programming
abstractions. System administrators can leverage a collection of tools to monitor and control the
deployed infrastructure.

 Aneka acts as a workload distribution and management platform for accelerating applications in
both Linux and Microsoft .NET framework environments. Some of the key advantages of Aneka
over other workload distribution solutions include:

1) Support of multiple programming and application environments
2) Simultaneous support of multiple runtime environments
3) Rapid deployment tools and framework
4) Ability to harness multiple virtual and/or physical machines for accelerating application

provisioning based on users’ Quality of Service/service-level agreement (QoS/SLA)

requirements
5) Built on top of the Microsoft .NET framework, with support for Linux environments

 Aneka offers three types of capabilities which are essential for building, accelerating, and managing clouds
and their applications:

1) Build Aneka includes a new SDK which combines APIs and tools to enable users to rapidly

develop applications. Aneka also allows users to build different runtime environments.

2) Accelerate Aneka supports rapid development and deployment of applications in multiple runtime

environments running different operating systems such as Windows or Linux/UNIX. Aneka uses
physical machines as much as possible to achieve maximum utilization in local environments.

3) Manage Management tools and capabilities supported by Aneka include a GUI and APIs to set up,

monitor, manage, and maintain remote and global Aneka compute clouds. Aneka also has an
accounting mechanism and manages priorities and scalability based on SLA/QoS which enables

dynamic provisioning.

 Here are three important programming models supported by Aneka for both cloud and traditional parallel
applications:

1) Thread programming model, best solution to adopt for leveraging the computing capabilities of
multicore nodes in a cloud of computers

2) Task programming model, which allows for quickly prototyping and implementing an independent
bag of task applications

3) MapReduce programming model,as discussed

Aneka Architecture

Aneka as a cloud application platform features a homogeneous distributed runtime environment for

applications. This environment is built by aggregating together physical and virtual nodes hosting the

Aneka container. The container is a lightweight layer that interfaces with the hosting environment and

manages the services deployed on a node. The interaction with the hosting platform is mediated through the

Platform Abstraction Layer (PAL), which hides in its implementation all the heterogeneity of the different

operating systems.

RCR Institute of Management & Technology (RCRM) Page 24

 CLOUD COMPUTING

Figure: Architecture and components of Aneka.

The available services can be aggregated into three major categories:

 Fabric Services: Fabric services implement the fundamental operations of the infrastructure of the
cloud. These services include HA and failover for improved reliability, node membership and
directory, resource provisioning, performance monitoring, and hardware profiling.

 Foundation Services: Foundation services constitute the core functionalities of the Aneka
middleware. They provide a basic set of capabilities that enhance application execution in the cloud.
These services provide added value to the infrastructure and are of use to system administrators and
developers. Within this category we can list storage management, resource reservation, reporting,
accounting, billing, services monitoring, and licensing. Services in this level operate across the range
of supported application models.

 Application Services: Application services deal directly with the execution of applications and are in charge of
providing the appropriate runtime environment for each application model. They leverage

RCR Institute of Management & Technology (RCRM) Page 25

 CLOUD COMPUTING

foundation and fabric services for several tasks of application execution such as elastic scalability, data
transfer, and performance monitoring, accounting, and billing. At this level, Aneka expresses its true
potential in supporting different application models and distributed programming patterns.

 CloudSim

 CloudSim is a library for the simulation of cloud scenarios. It provides essential classes for
describing data centres, computational resources, virtual machines, applications, users, and policies
for the management of various parts of the system such as scheduling and provisioning.

 CloudSim provides a generalised and extensible simulation framework that enables seamless
modelling and simulation of app performance. By using CloudSim, developers can focus on
specific systems design issues that they want to investigate, without getting concerned about details
related to cloud-based infrastructures and services.

An introduction to CloudSim

 CloudSim is a simulation tool that allows cloud developers to test the performance of their
provisioning policies in a repeatable and controllable environment, free of cost.

 Using these components, it is easy to evaluate new strategies governing the use of clouds, while
considering policies, scheduling algorithms, load balancing policies, etc.

 It can also be used to assess the competence of strategies from various perspectives such as cost,
application execution time, etc. It also supports the evaluation of Green IT policies. It can be used
as a building block for a simulated cloud environment and can add new policies for scheduling,
load balancing and new scenarios.

 It is flexible enough to be used as a library that allows you to add a desired scenario by writing Java
program.

 By using CloudSim, organisations, R&D centres and industry-based developers can test the
performance of a newly developed application in a controlled and easy to set-up environment. The
prominent features offered by CloudSim are given in Figure 1.

RCR Institute of Management & Technology (RCRM) Page 26

 CLOUD COMPUTING

Architecture of CloudSim

The CloudSim layer provides support for modelling and simulation of cloud environments including

dedicated management interfaces for memory, storage, bandwidth and VMs. It also provisions hosts to

VMs, application execution management and dynamic system state monitoring. A cloud service provider

can implement customised strategies at this layer to study the efficiency of different policies in VM

provisioning.

The user code layer exposes basic entities such as the number of machines, their specifications, etc, as
well as applications, VMs, number of users, application types and scheduling policies.

The main components of the CloudSim framework,

Regions: It models geographical regions in which cloud service providers allocate resources to their
customers. In cloud analysis, there are six regions that correspond to six continents in the world.

Data centres: It models the infrastructure services provided by various cloud service providers. It
encapsulates a set of computing hosts or servers that are either heterogeneous or homogeneous in nature,
based on their hardware configurations.

Data centre characteristics: It models information regarding data centre resource configurations.

Hosts: It models physical resources (compute or storage).

The user base: It models a group of users considered as a single unit in the simulation, and its main

responsibility is to generate traffic for the simulation.

Cloudlet: It specifies the set of user requests. It contains the application ID, name of the user base that is

the originator to which the responses have to be routed back, as well as the size of the request execution
commands, and input and output files. It models the cloud-based application services. CloudSim

categorises the complexity of an application in terms of its computational requirements. Each application
service has a pre-assigned instruction length and data transfer overhead that it needs to carry out during its

life cycle.

Service broker: The service broker decides which data centre should be selected to provide the services to

the requests from the user base.

VMM allocation policy: It models provisioning policies on how to allocate VMs to hosts.

VM scheduler: It models the time or space shared, scheduling a policy to allocate processor cores to VMs.

RCR Institute of Management & Technology (RCRM) Page 27

